New Synthesis of 5-Amino-5-deazaflavin Derivatives by Direct Coupling of 5-Deazaflavins and Amines

Tetsutaro Kimachi and Fumio Yoneda*

Faculty of Pharmaceutical Sciences, Kyoto University, Sakyo-ky 606, Kyoto, Japan

Takuma Sasaki

Department of Experimental Therapeutics, Cancer Research Institute, Kanazawa University, 13-1, Takaramachi, Kanazawa 920 Japan Received November 12, 1991

5-Amino-5-deazaflavin derivatives are newly synthesized by direct coupling of 5-deazaflavins and amines. Some of them revealed potential activity toward tumor cells such as L1210 or KB cells.

J. Heterocyclic Chem., 29, 763 (1992).

5-Deazaflavins (5-deazaisoalloxazines), in which N-5 of the flavins is replaced by CH, have first been synthesized as potential riboflavin antagonists [1]. 5-Deazaflavins themselves were found to be multifunctional and reactive and to serve as cofactors for several flavin catalyzed reactions [2]. Naturally occurring F_{420} isolated from methane producing bacteria has a 5-deazaflavin skeleton as an 8-hydroxy-5-deazaflavin derivative, and acts as coenzymes in the oxido-reductive system from carbon dioxide to methane [3,4].

It has been known that 5-deazaflavins have strong oxidizing power which oxidizes alcohols and amines to the corresponding carbonyl compounds and they behave as autorecycling turnover catalysts in the reactions [5,6].

Scheme 1

Previously we have suggested that there are two competitive pathways in the oxidation of amines with 5-deazaflavins [7]. One is the formation of the corresponding imines by hydride or its equivalent transfer agent and the other is the reversible addition of amines into the 5-position of 5-deazaflavins to give 5-amino-1,5-dihydro-5-deazaflavins (Scheme 1). The oxidation of these 5-adducts may give the corresponding 5-amino-5-deazaflavins. Furthermore we have reported that the preferential oxidation of amines occurred when the reaction was carried out with 8-hydroxy-5-

deazaflavins having an electron releasing group at the 8-position and that the reason might be because of the destabilization of the above intermediate 5-amino-1,5-dihydro-5-deazaflavins [8] (Scheme 2).

Scheme 2

The 5-amino-5-deazaflavins have usually been obtained from 5-deazaflavins by a few steps syntheses including epoxydation and chlorination, followed by amination [7]. In this paper we describe the direct coupling of 5-deazaflavins with amines which leads to the formation of 5-amino-5-deazaflavin derivatives.

Direct coupling of 5-deazaflavins with amines was car-

Scheme 3 SYNTHESIS OF 5-AMINO-5-DEAZAFLAVINS
BY TWO ROUTES

Table 1

R	R'	Formula	Mw	Ms	mp (°C)	Anal.	Calcd./	Found	Yield (%)	from
					• • •	С	H	N	Direct	5-Cl-5-dFl
Ethyl	Phenethyl	$C_{22}H_{22}N_4O_2$	374	374	220	70.57 70.81	5.92 5.98	14.96 14.81	14.0	80
Ethyl	Octyl	$C_{22}H_{30}N_4O_2$	382	382	132	69.08 68.93	7.91 7.74	14.65 14.70	33.7	44
Butyl	Phenethyl	$\mathrm{C}_{24}\mathrm{H}_{26}\mathrm{N}_4\mathrm{O}_2$	402	402	185	71.62 71.70	6.51 6.48	13.92 13.72	12.8	80
Butyl	Octyl	$\mathrm{C}_{24}\mathrm{H}_{34}\mathrm{N}_4\mathrm{O}_2$	410	410	130	70.21 70.07	8.35 8.35	13.65 13.41	13.0	84
Octyl	Phenethyl	$C_{28}H_{34}N_4O_2$	458	458	163	73.36 73.30	7.42 7.49	12.23 12.39	12.3	78
Octyl	Octyl	$C_{28}H_{42}N_4O_2$	460	460	118	72.10 71.90	9.01 8.94	12.02 12.11	28.4	82
Dodecyl	Phenethyl	$C_{32}H_{42}N_4O_2$	514	514	153	74.71 74.43	8.17 8.25	10.89 10.80	17.7	70
Dodecyl	Octyl	$\mathrm{C_{32}H_{50}N_4O_2}$	522	522	121	73.51 73.30	9.65 9.87	10.72 10.72	66.8	59.4

ried out by heating 5-deazaflavins with neat amines to afford the corresponding 5-amino-5-deazaflavins in moderate yields. The structures of the 5-amino-5-deazaflavins were established by comparison with the products synthesized by an unequivocal route involving the amination of 5-chloro-5-deazaflavins. The 5-chloro-5-deazaflavins were obtained by epoxidation of 5-deazaflavins with m-chloroperbenzoic acid, followed by the treatment with the Vilsmeier reagent (DMF:phosphoryl chloride = 5:1) [9]. The 5-chloro-5-deazaflavins reacted readily with amines in an argon atmosphere to afford the corresponding 5-amino-5-deazaflavins quantitatively (Scheme 3) (Table 1).

The above facts show that the nucleophilic addition of amines to the 5-position of 5-deazaflavins occurs competitively with the proper amine oxidation by the 5-deazafla-

Table 2
Cytotoxities of 5-Amino-5-Deazaflavins Against L1210 and KB Cells

		IC ₅₀ ,	ug/ml
R	R'	L1210	KB cell
Ethyl	Phenethyl	3.8	>50
Ethyl	Octyl	2.3	6.2
Butyl	Phenethyl	4.4	13.5
Butyl	Octyl	3.6	9.8
Octyl	Phenethyl	8.8	19
Octyl	Octyl	0.6	>50
Dodecyl	Phenethyl	16	>50
Dodecyl	Octyl	1.8	>50

vins to give the intermediate 5-amino-1,5-dihydro-5-deazaflavins which may be oxidized with another molecule of 5deazaflavin or air to give the final 5-amino-5-deazaflavins.

The cytotoxities of the 5-amino-5-deazaflavins against L1210 and KB cells are illustrated in Table 2.

EXPERIMENTAL

All materials not explicitly discussed were purchased from Wakenyaku Co., Nacalai Tesque Co. and Aldrich chemical Co. The 'H nmr spectra were obtained with a JEOL JNM-FX 200 fourier transform spectrometer. The ir spectra were measured with a Shimazu IR-400 spectrometer. Melting points were taken using a Yanagimoto micromelting point apparatus and are uncorrected. Mass spectra were obtained on a JEOL 01SG-2 instrument (direct inlet) at 70 eV.

Direct Coupling of 5-Deazaflavins la-1d with Amines. General Procedure for Synthesis of 3.

An amine solution (2.0 ml) containing 5-deazaflavins (0.2 mmole) was heated at 90° for 18 hours. The reaction mixture was diluted with ethyl ether (10 ml) and cooled. The precipitate which formed was filtered off and recrystallized from ethanol (Table 1).

Synthesis of 5-Chloro-5-deazaflavins 2a-2d. General Procedure.

According to a known procedure [9], 5-chloro-5-deazaflavins were synthesized. A mixture of 5-deazaflavins la-ld (0.1 mmole) with m-chloroperbenzoic acid (1.3 equivalents) in chloroform was stirred at room temperature. The yellow fluorescent solution changed to colorless and the starting 5-deazaflavin disappeared.

The reaction mixture was washed with aqueous ammonium chloride solution and extracted with chloroform. The chloroform layer was collected, dried and concentrated to a small volume. The isolated product was used for the next step without further purification.

The 4a,5-epoxy-5-deazaflavin thus obtained was added to the Vilsmeier reagent (DMF:phosphoryl chloride = 5:1) and the mixture was heated at 90° for 2 hours. By cooling the corresponding 5-chloro-5-deazaflavin was obtained as a precipitate.

5-Chloro-10-octyl-5-deazaflavin (2c).

This compound was obtained in a yield of 63%, mp >300°. Anal. Calcd. for $C_{20}H_{24}N_3O_2Cl$: C, 64.26; H, 6.43; N, 11.24. Found: C, 63.98; H, 6.41; N, 11.62.

5-Chloro-10-dodecyl-5-deazaflavin (2d).

This compound was obtained in a yield of 58%, mp >300°. Anal. Calcd. for $C_{24}H_{32}N_3O_2Cl$: C, 67.05; H, 7.45; N, 9.78. Found: C, 66.85; H, 7.25; N, 9.68.

Amination of 5-Chloro-5-deazaflavins. General Procedure.

An excess amount of the amine (2 ml) was added dropwise to a

suspension of the requisite 5-chloro-5-deazaflavin 2a-2d (1 mmole) in acetonitrile under argon atmosphere. The mixture was heated for 3-4 hours. Acetonitrile was removed *in vacuo* and to the residue ethyl ether was added to form a colorless powder, which was recrystallized from ethanol (Table 1).

REFERENCES AND NOTES

- [1] D. E. O'Brien, L. T. Weinstock and C. C. Cheng, J. Heterocyclic Chem., 7, 99 (1970).
- [2] P. Hemmerich, V. Messey and H. Fenner, FEBS Letters, 84, 5 (1977).
- [3] D. Eirich, G. D. Vogels and R. S. Wolfe, *Biochemistry*, 17, 4583 (1978).
 - [4] C. Walsh, Acc. Chem. Res., 19, 216 (1986).
- [5] F. Yoneda, Y. Sakuma and P. Hemmerich, J. Chem. Soc., Chem. Commun., 825 (1977).
 - [6] F. Yoneda and K. Tanaka, Med. Res. Rev., 7, 477 (1987).
 - [7] F. Yoneda, Lectures in Heterocyclic Chemistry, 5, 73 (1980).
- [8] R. Hirayama, M. Kawase, T. Kimachi, K. Tanaka and F. Yoneda, J. Heterocyclic Chem., 26, 1255 (1989).
 - [9] F. Yoneda and Y. Sakuma, Tetrahedron Letters, 22, 3977 (1981).